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ABSTRACT. In this paper I examine Quine’s indispensability argument, with
particular emphasis on what is meant by ‘indispensable’. I show that confirmation
theory plays a crucial role in answering this question and that once indispensabil-
ity is understood in this light, Quine’s argument is seen to be a serious stumbling
block for any scientific realist wishing to maintain an anti-realist position with
regard to mathematical entities.

1. INTRODUCTION

For some time now ontological discussions in the philosophy of
mathematics have been dominated by three arguments. The first
of these is the Benacerraf objection to the natural numbers being
identified with sets (since it seems arbitrary which sets one chooses
to identify them with). The second argument is the well known
epistemological problem for Platonism. That is, if mathematical
objects such as sets, functions and numbers have mind indepen-
dent, though admittedly abstract, existence, how is it that we have
knowledge of them, given a causal theory of knowledge?1 The third
argument is the Quinean argument2 that mathematical entities are
indispensable to our best physical theories3 and therefore share the
ontological status of scientific entities. The first two of these argu-
ments are directed against Platonism, of some form or another, while
the third is usually taken to be an argumentfor Platonism, perhaps,
as Hartry Field suggests, “the only non-question-begging” argument
for Platonism. ([10], 4)

In this paper I examine the indispensability argument and, in
particular, the notion of ‘indispensability’ itself. I will argue (i) that
dispensability cannot be “cashed out” purely in terms of elimina-
bility, as is often assumed, and that (ii) if an entity is dispensable to
a theory, all talk of that entity must be eliminable from the theory
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and the resulting theory be preferable to the original.4 Furthermore,
once this is appreciated, the indispensability argument is seen to be a
serious stumbling block for any scientific realist wishing to maintain
an anti-realist position with regard to mathematical entities.

By way of motivation, I should mention the work of Hartry
Field.5 Field has proposed a bold attack on Quine’s argument, claim-
ing that mathematicsis dispensable to our best physical theories –
mathematics is just a useful tool. He adopts a “fictional” account
of mathematics in which all the usually accepted sentences of
mathematics are literally false, but true “in the story” of accepted
mathematics. He then explains why it is permissible to use this false
body of sentences in physical theories in terms of mathematics’
conservativeness. This is, very roughly, that mathematics preserves
truth in the nominalist theories in which it is used, although, of
course, on Field’s view the mathematics itself is false.

The ambitious part of his program is to show that mathematics
is in fact dispensable. He begins this task by giving a nominalistic
treatment of Newtonian gravitational theory, thus allegedly showing
that mathematical entities are not essential to this theory. This is
the point that motivates the present paper. He does not give a clear
account of what he takes ‘dispensable’ to mean in this context. He
clearly does not take it to mean simply eliminable,6 and yet most
of his work is devoted to showing that mathematical entities are
eliminable from physical theories. This failure to explicate what
is meant by ‘indispensable’ in Quine’s argument allows programs
such as Field’s to look more appealing than they perhaps ought.7

This present paper, and its discussion of indispensability, should be
understood in the context of this debate.

In the next section I will outline Quine’s indispensability argu-
ment. After this I will look at what we mean by ‘indispensable’
and the role confirmation theory plays in indispensability decisions,
followed in the next section, by a presentation of some examples
from the history of science that suggest that mathematics is indeed
indispensable to our best scientific theories. Finally, a brief conclu-
sion in which the importance of my thesis is stressed for certain
versions of nominalism.
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2. THE INDISPENSABILITY ARGUMENT

Quine’s indispensability argument may be stated as follows: We
have good reason to believe our best scientific theories and there are
no grounds on which to differentiate scientific entities from mathe-
matical entities, so we have good reason to believe in mathematical
entities, since they, like the relevant scientific entities, are indispens-
able to the theories in which they occur.8 Furthermore, it is exactly
the same evidence that confirms the scientific theory as a whole,
that confirms the mathematical portion of the theory and hence the
mathematical entities contained therein.

A couple of comments are warranted here. Firstly, the reason that
Quine claims we cannot differentiate between theoretical scientific
entities and mathematical entities in a theory is because theories
must be considered holistically, hence his view that theories are
“seamless”. In Quine’s famous words “. . . our statements about the
external world face the tribunal of sense experience not individually
but only as a corporate body.”([24], 41) Secondly, the reason we
should believe in the entities postulated by our best theories is due
to Quine’s belief in naturalism which “sees natural science as an
inquiry into reality, fallible and corrigible but not answerable to
any supra-scientific tribunal, and not in need of any justification
beyond observation and the hypothetico-deductive method.”([26],
72) Thus naturalism justifies belief in only those entities postulated
by our best scientific theories. We see then, that there are three
premises on which this argument is based:holism, naturalism, and
indispensability. This suggests three ways in which someone might
resist the argument. The first way is to reject holism. For example,
Penelope Maddy’s recent criticisms of indispensability theory9 are
largely concerns about holism. She argues that mathematical and
scientific practices don’t support the kind of holism that the indis-
pensability argument requires. In short, she claims that scientific
practice doesn’t warrant belief inall the entities of our best scientific
theories.

The second way someone might resist Quine’s argument is to
reject naturalism, at least as Quine construes it. Such a person
would claim that we should not necessarily look to science for our
ontological commitments. Thus they may agree that mathematical
entities are on an ontological par with other entities postulated by
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science, but these too lack mind independent existence. That is, they
may adopt some general anti-realist position. Bas van Fraassen’s
constructive empiricism can be construed as such a rejection of
Quinean naturalism.10

While I acknowledge that the two ways of disarming the Quinean
argument I have just mentioned are “live” options and will not
be significantly weakened by what is to follow, there is a third
approach. This is to deny the indispensability of mathematics to
physical science. Such an attack would typically be made by a
scientific realist who is a nominalist of some kind. As I have already
mentioned, Hartry Field proposes just such an approach. In order
to understand exactly what is required of a program like Field’s, or
indeed to understand the force of the indispensability argument, we
must first clear up what we mean by ‘indispensable’. I shall discuss
this in detail in the following section.

3. WHAT IS IT TO BE INDISPENSABLE?

In order to answer the question in this section’s title I will consider a
case where there should be no disagreement about the dispensability
of the entity in question. I shall then analyse this case to see what
leads us to conclude that the entity in question is dispensable.

Consider an empirically adequate and consistent theory0 and
let ‘ξ ’ be the name of some entity neither mentioned nor predicted
by 0. Clearly we can construct a new theory0+ from 0 by simply
adding the sentence ‘ξ exists’ to0. Note, however, thatξ plays no
role in the theory0+, it is merely predicted by it. I propose that there
should be no disagreement here when I say thatξ is dispensable to
0+, but let us investigate why this is so.

On one interpretation of ‘dispensable’ we could argue thatξ is
not dispensable since its removal from0+ results in a different
theory, namely,0. This is not a very helpful interpretation though,
since all entities are indispensable to the theories in which they
occur under this reading. Another interpretation of ‘dispensable’
might be thatξ is dispensable to0+ since there exists another
theory,0, with the same empirical adequacy as0+ in which ξ
does not occur. This interpretation can also be seen to be inadequate
since it may turn out thatno theoretical entities are indispensable
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under this reading. This result follows from Craig’s theorem.11 If the
vocabulary of the theory can be partitioned in the way that Craig’s
theorem requires (cf. footnote 6), then the theory can be reaxioma-
tised so that any given theoretical entity is eliminated.12 I claim,
therefore, that this interpretation of ‘dispensable’ is unacceptable
since it fails to account for whyξ in particular is dispensable.

This leads me to the following explication of ‘dispensable’:

Definition. An entity is dispensable to a theory if there exists a
modification of that theory resulting in a second theory with exactly
the same observational consequences as the first, in which the entity
in question is neither mentioned nor predicted. Furthermore, the
second theory must be preferable to the first.

In the preceding example then,ξ is dispensable since0 makes no
mention of ξ and 0 is preferable to0+ in that the former has
less ontological commitment than the latter, all other things being
equal (and assuming, of course, that less ontological commitment is
better).13

Now it might be argued that on this reading once again every
theoretical entity is dispensable, since by Craig’s theorem we can
eliminate any reference to any entity and the resulting theory will
be better, since it doesn’t have ontological commitment to the entity
in question. This argument is flawed though, since the reason for
preferring one theory over another is a complicated question – it is
not simply a matter of empirical adequacy combined with a prin-
ciple of ontological parsimony. In the next section I will discuss
some aspects of confirmation theory and what role it plays in
indispensability decisions.

4. THE ROLE OF CONFIRMATION THEORY

Confirmation theory is the study of those principles which guide
scientific reasoning other than reasoning of the deductive kind. In
particular, it will help us in deciding whether one theory is better
than another by giving us some desiderata for “good theories”.14

Firstly and foremost, a “good theory” must be empirically
adequate, that is, it must agree with all (or at least most) observation.
Secondly, it must be consistent, both internally and with other major



6 MARKCOLYVAN

theories. This is not the whole story though. As we have already
seen0 and0+ have the same degree of empirical adequacy and
consistency (by construction) and yet we are inclined to prefer the
former over the latter. I am in agreement with many authors here15

that amongst the additional features we require are the following:

(i) Simplicity: Given two theories with the same empirical
adequacy, we generally prefer that theory which is simpler
in both its statement and in its ontological commitments. For
example, Einstein, in his formulation of the special theory of
relativity, refused to admit an undetectable luminiferous ether,
as some rival theories did, to jointly explain the propagation of
electromagnetic radiation through apparently empty space and
the failure of the Michelson-Morley experiment to detect such
an ether.([9], 38)

(ii) Unificatory/Explanatory Power: Philip Kitcher argues, rather
convincingly, in [16] for scientific explanation being unifica-
tion. That is, accounting for a maximum of observed phenom-
ena with a minimum of theoretical devices. Whether or not
you accept Kitcher’s account, we still require that a theory
not simply predict certain phenomena, but explain why such
predictions are expected. Furthermore, the best theories do
so with a minimum of theoretical devices. For example, the
success of Newtonian gravitational theory was in no small way
due to its ability to explain such diverse phenomena as tides,
planetary orbits and projectile motion (among other things)
from a small stock of theoretical “machinery”.

(iii) Boldness:We expect our best theories not to simply predict
everyday phenomena, but to make bold predictions of novel
entities and phenomena which lead to future research. The
prediction of gravitational waves by general relativity is an
example of such a bold prediction that is still being actively
investigated.

(iv) Formal Elegance:This is perhaps the hardest feature to char-
acterise (and no doubt the most contentious). However, there
is at leastsomesense in which our best theories have aesthetic
appeal. For instance, it may well be on the grounds of formal
elegance that we rule outad hocmodifications of a failing
theory.



CONFIRMATION THEORY AND INDISPENSABILITY 7

I will not argue in detail for each of these, except to say that
despite the notorious difficulties involved in explicating what we
mean by such terms as ‘simplicity’ and ‘elegance’, we do look for
such virtues in our best theories. Otherwise we could never choose
between two theories such as0 and0+. I do not claim that this list
is comprehensive nor do I claim that it is minimal,16 I merely claim
that these sorts of criteria are typically appealed to in the literature to
distinguish “good theories”, and I have no objection to such appeals.

In the light of the preceding discussion then, we see that a claim
that an entity is dispensable is a claim that a modification of the
theory in which it is posited can be made in such a way as to elim-
inate the entity in question and result in a theory which is better
overall in terms of simplicity, elegance and so on. Thus we see
that the argument I presented at the end of the previous section that
any theoretical entity is dispensable, does indeed fail, as I claimed.
This is because in most cases the benefit of ontological simplicity
obtained by the elimination of the entity in question will be more
than offset by losses in other areas.

While it seems reasonable to suppose that the elimination of talk
of physical entities such as electrons, from the body of scientific
theory, would cause an overall reduction in the previously described
virtues of that theory, it is not so clear that the elimination of talk of
mathematical entities would have the same impact. Someone might
argue that mathematics is certainly a very effective language for the
expression of scientific ideas, in that it simplifies the calculations
and statement of much of science, but to do so at the expense of
introducing into one’s ontology the whole gamut of mathematical
entities is just not a good deal.

One response to this is to simply deny that it is a high price at
all. After all, a powerful and efficient language is the cornerstone of
any good theory. If you have to introduce a few more entities into the
theory to get it, then so be it. Although I have considerable sympathy
with this response, in this paper I wish to pursue a different and, I
think, more convincing line. I wish to argue that mathematics plays
anactiverole in many of the theories which make use of it. That is,
it is not just a tool which makes calculations easier or simplifies the
statement of the theory – it makes important contributions to all of
the desiderata of good theories I mentioned earlier.17
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My strategy from here is to show that there is good reason to
believe that the mathematised version of a theory is more “virtu-
ous” than the original theory, and so there is good reason to
believe mathematics is indispensable, in the sense I have previously
outlined, to our best physical theories. I shall demonstrate this in the
next section by appealing to a number of examples of physical theor-
ies and showing how the mathematised theory is seemingly capable
of more than what one would expect from a nominalised version.
Notice that it is not necessary for me to show that this is the case for
all our best physical theories, as the indispensability argument goes
through in case mathematics is indispensable to some non-empty
subset of our best physical theories.

I also note here that I am not proposing to demonstrate beyond
all doubt the indispensability of mathematics in the cases I consider,
merely to suggest that if these theories were stripped of their mathe-
matical content it seems that they would lose much of their appeal.
If I succeed, the burden of proof will lie with anyone who claims
that mathematicsis dispensable, for they must show, firstly, how
it is possible to remove all commitment to mathematical entities
from all physical theories and, secondly, how this removal does not
result in a reduction of virtue of these theories. This problem will be
particularly evident in the cases I consider in the next section.

5. THE ROLE OF MATHEMATICS IN PHYSICAL THEORIES

In his book,Philosophical Naturalism, David Papineau suggests
that “the incorporation of pure mathematics into scientific theories
[. . . ] might make it easier to do calculations, but [. . . ] receives no
backing from principles of scientific theory choice.” ([21], 196) In
this section I will show that this view is, at the very least, extremely
controversial. I will demonstrate this by appealing to a number
of examples in which mathematics contributes to the unification
and boldness of the physical theory in question, and thereforeis
supported by well recognised principles of scientific theory choice.
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5.1. The Complex Numbers

The first example is the complex numbers. I will discuss how the
introduction of these was responsible for a great deal of unification
within both pure mathematics and in more applied fields such as
differential equations in physics. In particular, I wish to look at the
way in which the complex numbers unify the exponential function
and the trigonometric functions, and how this has direct applications
in the study of second-order ordinary differential equations which
arise in almost all branches of science, including fluid mechanics,
heat conduction and population dynamics.

We begin by introducing the numberi = √−1 and defining
a complex variablez = x + yi where x and y are real. Once
we have extended the operations ‘+’ and ‘·’ and the relation ‘=’
from the reals to the complex in the natural way, we can introduce
complex exponentiation via the following equation known as Euler’s
formula:

eiθ = cosθ + i sinθ θ ∈ IR.

From this we can define the trigonometric functions for a complex
variablez as

sinz = e
iz − e−iz

2i
and cosz = e

iz + e−iz
2

.

The usual real-valued sine and cosine functions are seen to be
special cases of the more general definitions. Thus the complex
numbers are instrumental in the unification of the trigonometric and
the exponential functions. This unification, being within mathema-
tics itself, may seem somewhat irrelevant to the matter at hand, so I
shall demonstrate how this unification “flows through” to physics.

Consider the second-order linear homogeneous ordinary differ-
ential equation with constant coefficients:

y ′′ + y ′ + y = 0(1)

wherey is a real-valued function of the single real variablex. Equa-
tions such as these are solved by considering their characteristic
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equations, which are quadratics and so, by the fundamental theorem
of algebra, always have two (complex) roots (counting multiplicity).
In this case the characteristic equation is

r2+ r + 1= 0

which has (complex) rootsr = −1
2± i

√
3

2 . Now the general solution
to an equation with unequal roots to its characteristic equation is:

y = c1e
r1x + c2e

r2x(2)

wherec1 andc2 are arbitrary real constants andr1 and r2 are the
two distinct roots of the characteristic equation.18 Note that (2) is
indifferent as to whetherr1 and r2 are real or complex. Thus the
solution to (1) is given by

y = c1e
(− 1

2+
√

3
2 i)x + c2e

(− 1
2−
√

3
2 i)x

from which we can obtain thereal solution

y = e−x2
(
c1 cos

(√3

2
x
)
+ c2 sin

(√3

2
x
))
.

Thus we see that without the use of complex numbers we would
have to treat the equationsy ′′ − y = 0, which has real roots to its
characteristic equation, quite differently fromy ′′ + y = 0, which
has complex roots to its characteristic equation. Furthermore, the
connection between the exponential function, which is a solution to
the first, and the cosine and sine functions, which are solutions to the
second, is spelled out via the definitions of trigonometric functions
of a complex variable given earlier. This I see as a fine example
of the unity which a mathematical theory may bring to both other
mathematical theories and also scientific theory generally.

What is more, I take this unity to be not simply an algorithmic
unity, that is, a single method for finding solutions to these equa-
tions. Rather, I take it that the algorithmic unity arises out of deep
structural similarities between the systems portrayed by these equa-
tions. For example, if two different physical systems are governed
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by the same differential equation, it’s clear that there is some simil-
arity between these systems, no matter how disparate the systems
may seem (just as a red planet and a red dog have something in
common). It seems plausible, at least, that this similarity is structural
and is captured by the relevant differential equation. Even when the
systems are governed by different differential equations, structural
similarities may still be revealed in the mathematics. In the case of
the two equations in the previous paragraph, the structural similar-
ity of any two systems governed by these equations is revealed by
the connection between the equations’ respective solutions. Mathe-
matics, because of its abstract nature, is extremely well suited to
providing unification in this very important sense.

5.2. The Dirac Equation

In the next example I will show that mathematics may contribute
to the boldness of theories by playing an important role in the
prediction of novel phenomena – in this case the discovery of
antimatter.

In classical physics one occasionally comes across solutions to
equations which are discarded because they are “non-physical”.
Examples include negative energy solutions to dynamical systems.
Such a situation arose for Paul Dirac in 1928 when he was study-
ing the solutions of the equation of relativistic quantum mechanics
which now bears his name. This equation describes the behaviour
of electrons and hydrogen atoms, but was found to also describe
particles with negative energies. It must have been tempting for
Dirac to simply dismiss such solutions as “non-physical”, however,
strange things are known to occur in quantum mechanics and intu-
itions about what is “non-physical” are not so clear. Instead, Dirac
trusted the mathematics and investigated the possibility of negative
energy solutions. In particular, he sought to give an account of why
a particle cannot make a transition from a positive energy state to a
negative one.

Dirac realised that the Pauli exclusion principle19 would prevent
electrons from dropping back to negative energy states if such states
were already occupied by negative energy electrons. Furthermore,
if a negative energy electron were raised to a positive energy state,
it would leave behind an unoccupied negative energy state. This
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unoccupied negative energy state would act like a positively charged
electron or a “positron”. Thus Dirac, by his faith in the mathematical
part of relativistic quantum mechanics and his reluctance to discard
what looked like non-physical solutions, predicted the positron.20

This story is even more remarkable for the fact that Dirac was
trying to reconcile quantum mechanics with special relativity by
reworking Schrödinger’s wave mechanics in terms of particle waves.
This point of view is, as we now know, largely mistaken. The proper
context for reconciling special relativity and quantum mechanics is
via quantum field theory, and yet the mathematical component of
Dirac’s theory has survived, indeed it is an important part of modern
quantum field theory.([30], 120–121) So not only did Dirac’s equa-
tion play a significant role in predicting a novel entity, despite the
relevant solutions seeming non-physical, it did so based largely on
false assumptions. It is hard to see how a nominalised version of
Dirac’s theory would have had the same predictive success.21

5.3. The Lorentz Transformations

This final example is similar to the previous one in some ways. I will
discuss how a set of equations known as the Lorentz transforma-
tions were part of a paper written in 1904 by H.A. Lorentz based
on some fairly strange assumptions, and yet these same transforma-
tions became an integral part of Einstein’s special relativity a year
later, based on entirely different assumptions. So again we see an
example of some mathematical equations surviving the death of the
theory that spawned them, thus suggesting that the mathematics is
capturing something that the original theory did not.

The “luminiferous ether” was postulated by physicists in the
middle of the nineteenth century22 as the medium through which
Maxwell’s electromagnetic radiation must be transmitted, since a
wave propagating through a vacuum seemed altogether too strange.
Indeed, even Maxwell seemed to support such a theory.([2], 39)
Furthermore it was proposed that this ether may provide the “abso-
lute rest” frame for Newtonian mechanics. Granted these assump-
tions, it was then reasonable to assume that the earth should be
moving relative to the frame of the ether, so we ought to be able
to detect an “ether wind” as a result of this motion.
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In 1887 Albert Michelson and Edward Morley conducted an
ingenious experiment designed to detect the “ether wind”. This
experiment made use of a piece of equipment known as an inter-
ferometer, which consisted of two arms of equal length set at right
angles to one another along which two beams of light were “raced”.
By observing interference patterns (if any) between the two light
beams, very small differences in the average velocities (relative to
the earth) of the two beams of light could be detected. Indeed, one
would expect a difference since, by elementary physics, the beam
of light travelling into the ether wind (and back again) should travel
slower than the beam travelling across the ether wind. The fact that
no difference was ever detected, despite exacting levels of precision
and many repeats of the experiment, was one of the great problems
for physicists in the latter part of the nineteenth, and early twentieth
centuries.

One explanation for the failure of the Michelson-Morley experi-
ment to detect any such velocity difference was offered by George
FitzGerald in 1892. FitzGerald proposed that the arm of the inter-
ferometer travelling into the ether was shortened by exactly the
amount required for the two light beams to take the same time for
their respective journeys. This seeminglyad hoc idea was given
support by Lorentz in his 1895 paper ([17]), and in his 1904 paper
([18]) he offered an explanation for this phenomenon in terms of
his theory of electromagnetic forces. In this latter paper, Lorentz
gives a mathematical statement of this shortening as a function of
the velocity of the interferometer relative to the “stationary frame
of reference” of the ether. The resulting equations are now known
as the Lorentz transformations. These four equations state that there
will be a contraction of the length of the arm of the interferometer
travelling into the ether but no corresponding contraction in either of
the two directions perpendicular to this, and so, in particular, there
will be no shortening of the length of the other arm. The fourth
equation was a time-dilation equation. This stated that a clock in
motion runs more slowly than a stationary one. Lorentz, however,
insisted that there was only one “true” time and that the “local time”
introduced was just a mathematical device to simplify Maxwell’s
equations for bodies in motion – it had no physical significance.
([2], 71–79)
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It is now well known that these equations are an integral part
of special relativity. In special relativity, however, the equations are
based on much more reasonable assumptions – namely the principle
of relativity23 and the principle of constancy.24 ([9], 37–38) In fact,
it might be argued that in Einstein’s theory, the Lorentz transforma-
tions are derived by careful attention to what wemeanby length
and time, rather than being motivated by anad hocdefence of the
ether.25

The point this example illustrates is that whatever merit Lorentz’s
theory had, and this merit was quite considerable (since his theory
predicted the novel phenomenon of the FitzGerald-Lorentz contrac-
tion amongst other things) it was surely largely in the transforma-
tions themselves, since presumably the underlying theory was false.
It is hard to see how a nominalistic version of this theory would have
made such predictions, since it is apparent from the above discus-
sion that the predictive success of the theory came from the fact that
the extremely abstract nature of mathematics allowed abstraction
away from the false underlying principles.26

6. CONCLUSION

To sum up then. I have argued that an entity is dispensable to
a theory if abetter theory can be constructed from the first, in
which the entity in question plays no part. Confirmation theory was
seen to be important here, in that it provided grounds on which
to base decisions about which of two competing theories is the
better. Thus confirmation theory plays a crucial role in indispensab-
ility decisions. Furthermore, it is around this sense of ‘dispensable’
that Quine’s indispensability argument revolves. It follows then,
that any critic of the indispensability argument who wishes to deny
that mathematics is indispensable to our best physical theories, is
obliged to not only give an account of how scientific theories may be
constructed without reference to mathematical entities of any kind,
but also show that the resulting theory is preferable to the original.

While I admit that I have remained rather vague about the details
of how to compare theories, nevertheless, Ihavepresented a case
for accepting that mathematical entities directly contribute towards
qualities such as boldness and unificatory power, which we see as
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properties of good theories. The above mentioned critic may argue
about degrees of unification and boldness and the like, but at the very
least they must demonstrate that scientific theory stripped of all its
mathematical entities has some degree of virtue comparable to the
original theory (if indeed science can be stripped of all its mathe-
matical entities in the first place). It is difficult to see how this could
be done, given that we don’t, in general, understand why it is that
mathematics contributes to the virtue of those portions of science
that make use of it. In the words of the renowned mathematical
physicist Eugene Wigner:

The miracle of the appropriateness of the language of mathematics for the formu-
lation of the laws of physics is a wonderful gift which we neither understand nor
deserve. ([31], 14)

It is perhaps being altogether too unreasonable to expect such a
“miracle” of the nominalist’s formalisation of science as well.

Finally, I wish to state explicitly that I am not claiming to have
dealt a fatal blow to nominalist programs such as Hartry Field’s, nor
was that my intention. I merely want to point outwhat is required of
themin the light of the indispensability argument, something which
the participants of these programs all too often overlook,27 or at least
fail to fully appreciate.

NOTES

∗ Earlier versions of this paper were presented at the Australian National Univer-
sity, the University of New England, Monash University, City University of New
York and the 10th International Congress of Logic, Methodology and Philosophy
of Science in Florence, Italy. I thank all those involved in the relevant discussions
for their valuable contributions. I also wish to thank Peter Menzies, Graham Oppy,
Jack Smart, Peter Roeper, Hartry Field, Michael Resnik and an anonymous referee
of this journal for their advice and criticisms which have greatly improved the
exposition of the matters dealt with in this paper.
1 Although Benacerraf made explicit reference to the causal theory of knowledge
in his formulation of the argument ([4]), the argument can be reconstructed so that
no such reference is required (as in ([11], 25–26)).
2 This argument goes back at least as far as Frege (see [12], 187) but owes its
modern formulation to Quine (see, for example, [23] and [27]). Perhaps the most
thorough presentation of this argument is by Hilary Putnam (see [22], 57–74).
3 Strictly speaking it’s not the entities themselves that are dispensable or indis-
pensable, but rather it’s the the postulation of the entities in question that may
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be so described. Having said this, though, I will, for the most part, continue to
talk aboutentitiesbeing dispensable or indispensable, occurring or not occurring,
and eliminable or not eliminable. I do this for stylistic reasons but I apologise in
advance to any reader who is is irritated by this.
4 John Burgess in [6] argues for a similar conclusion in his discussion of revolu-
tionary nominalism. The difference though, is that he sees the question of theory
choice, between Platonistic and nominalistic scientific theories, as a separate issue
to that of indispensability, whereas I see it as part of what we mean by ‘indispens-
ability’.
5 See [10] and [11] for details of Field’s program.
6 For example, inScience Without NumbersField suggest that mathematical entit-
ies are not theoretically indispensable since “we can giveattractivereformulations
of [the theories of modern physics] in which mathematical entities play no role”
(my emphasis). ([10], 8)
7 Quine actually speaks of entities existentially quantified over in the canonical
form of our best theories, rather than indispensability. (See [23] for details.) Still,
the debate continues in terms ofindispensability, so we would be well served to
clarify this latter term.
8 It might be questioned whether physical theories actually refer to mathematical
entities such as numbers and functions in the same way as they do to electrons
and muons, for instance. Perhaps they treat the physical systems as a model of
the uninterpretedmathematical structure for which the real numbers, say, are
also a model. I think this view is mistaken, however, since there are at least
some instances where theories refer explicitly to numbers. One such case is the
use of dimensionless constants such as the fine structure constant and the elec-
tron/proton mass ratio in physics. It is difficult to see how scientists talking about
such numbers could be construed to be talking about anything other than the
numbers themselves, since the fact that these numbers are dimensionless rules
out interpreting them as numerical quantifiers, quantifying over some portion of
the physical system in question. This, of course, doesn’t justify belief in, say, all
of the real numbers (because science doesn’t require that many dimensionless
constants). My point is simply that there appears to besomereference to numbers
in our best scientific theories. I am indebted to Peter Forrest for discussion on this
point.
9 See [19] and [20] for details of her arguments against indispensability theory.
See also [7] for a reply to her arguments.
10 See [29] for further details of constructive empiricism.
11 This theorem states that relative to a partition of the vocabulary of an axio-
matisable theoryT into two classes,τ andω (theoretical and observational say)
there exists an axiomatisable theoryT ′, in the language whose only non-logical
vocabulary isω, of all and only the consequences ofT that are expressible inω
alone.
12 Naturally the question of whether such partitioning is possible is important and
somewhat controversial. It seems that Quine would deny that such a partition is
possible. If he is right about this, it will be considerably more difficult to eliminate
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theoretical entities from scientific theories. I’m willing to grant for the sake of
argument, at least, that such a partitioningis possible.
13 One way in which you might think that less ontological commitment isnot
better, is ifξ actually exists. In this case it seems that0+ is the better theory since
it best describes reality. This, however, is to gloss over the important question of
how we come to know thatξ exists. If there is some evidence ofξ ’s existence
then0+ will indeed be the better theory, since it will be empirically superior. If
there is no such evidence for the existence ofξ then it seems entirely reasonable
to prefer0 over0+ as I suggest. It is the latter I had in mind when I set up this
case. Indeed, the former case is ruled out by construction. I am not concerned
with whetherξ actually exists or not – just that there be no evidence for it.
14 One might question whether these principles are deserving of the status of
theory, given that they are are at best rather vague methodological principles
whose application is poorly understood. This need not concern us though, since
nothing I say depends on these principles being well understood.
15 See, for instance, Hempel [14], 203–206, Horwich [15], 1–15, Weinberg [30],
105–131, Glymour [13], 152–155, and Quine in [25]. While all these authors
wouldn’t agree with my characterisation of the additional features entirely, I think
I have captured what are the most common elements in their accounts.
16 For instance, it may be possible to explain formal elegance in terms of simpli-
city and unificatory power.
17 The mathematical physicist Freeman Dyson makes a similar point when he
says “. . . mathematics is not just a tool by means of which phenomena can be
calculated; it is the main source of concepts and principles by means of which
new theories can be created.”([8], 129)
18 See [5] for further details.
19 This principle states that no two particles of spin one half can occupy the same
energy state at the same time, thus all electrons must occupy different specific
energy levels, from the lowest upwards.
20 The positron was subsequently discovered in 1932 as an ingredient of cosmic
rays.
21 Mark Steiner discusses this example in a slightly different context in his paper
[28]. See his paper for other excellent examples of the important role mathematics
plays in physical theory. See also [1] for further discussion of the role mathematics
plays in scientific discovery.
22 The concept of the ether, however, goes back at least as far as Descartes.
23 The laws of physics are the same for all inertial reference frames.
24 The speed of light (in a vacuum) is a constant for all inertial reference frames.
25 I don’t mean to denigrate Lorentz’s theory, indeed Lorentz and Henri Poincaré
very nearly produced the special theory of relativity between them. In fact the
renowned physicist Sir Edmund Whittaker thought Einstein’s role in the formu-
lation of special relativity was overemphasised when he summarised Einstein’s
contribution in his 1910 book on the history of the theories of the ether and
electricity in the single sentence: “. . . Einsteinpublished a paper [the 1905 paper]
which set forth the relativity theory of Poincaré and Lorentz with some ampli-
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fications, and which attracted much attention.”([2], 72) Needless to say most
physicists would not agree with Whittaker’s deflationary account of Einstein’s
contribution!
26 To put it another way, there are bridge laws between the mathematised Lorentz
theory and the nominalised version of the same, but also between the mathemat-
ised Lorentz theory and special relativity.
27 In fairness to Field though, he does seem to recognise some of the require-
ments I have outlined in that he argues that nominalistic theories can be “more
illuminating” than their Platonistic counterparts.([10], 44) Although I think he is
wrong about this I will not pursue the issue here.
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